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Abstract

In the past few years, all manner of storage systems,
ranging from disk array systems to distributed and wide-
area systems, have started to grapple with the reality
of tolerating multiple simultaneous failures of storage
nodes. Unlike the single failure case, which is optimally
handled with RAID Level-5 parity, the multiple failure
case is more difficult because optimal general purpose
strategies are not yet known.

Erasure Codingis the field of research that deals with
these strategies, and this field has blossomed in recent
years. Despite this research, the decades-old strategy of
Reed-Solomon coding remains the only space-optimal
(MDS) code for all but the smallest storage systems.
The best performing implementations of Reed-Solomon
coding employ a variant calledCauchy Reed-Solomon
coding, developed in the mid 1990’s [BKK+95].

In this paper, we present an improvement to Cauchy
Reed-Solomon coding that is based on optimizing the
Cauchy distribution matrix. We detail an algorithm
for generating good matrices and then evaluate the
performance of encoding using all manners of Reed-
Solomon coding, plus the best MDS codes from the lit-
erature. The improvements over the original Cauchy
Reed-Solomon codes are as much as 83% in realistic
scenarios, and average roughly 10% over all cases that
we tested.

1 Introduction

Erasure codes have profound uses in settings that in-
volve multiple storage nodes. These include disk array
systems, wide-area storage platforms, peer-to-peer stor-
age platforms, and grid storage platforms. An erasure

∗plank@cs.utk.edu , 865-974-4397, fax: 865-974.4404. Ap-
proximate word count: 5500. This work has been cleared through
the author’s institution. This material is based upon work supported
by the National Science Foundation under grants CNS-0437508, EIA-
0224441 and ACI-0204007.

code may be defined as follows.

We are givenn storage nodes withB bytes of
data each. To these, we addm storage nodes,
also withB bytes of storage capacity. Any of
these nodes may fail, which results in its stor-
age being inaccessible. Node failures are rec-
ognized by the storage system and are termed
erasures.

An erasure code defines how to encode
theBn bytes of data on the collection ofn+m
nodes such that upon failure of up tom nodes
from the collection, theBn bytes of data may
be recalculated from the non-failed nodes.

Erasure codes have been employed for fault-
tolerance and improved performance in single-
site [FMS+04, GWGR04, Wil06], archival [RWE+01],
wide-area [ASP+02, CP05, XC05] and peer-to-peer
storage systems [ZL02, Li04, LCL04, DLLF05].
They have additional uses in content distribution sys-
tems [BLMR98, Mit04]. As the number of components
in these systems grow and as they continue to employ
failure-prone interconnection networks, the need for
erasure codes will continue to grow in the future.

There are three dimensions of performance of an era-
sure code:

1. Space overhead. Space overhead may be evalu-
ated in one of two ways – either by the number
of coding nodes required to achieve a baseline of
fault-tolerance [Haf05a, Haf05b], or by the average
number of failures tolerated by a given number of
coding nodes [LMS+97, WK03, PT04]. Regard-
less of the evaluation methodolgy, space optimal-
ity may be achieved when the number of coding
nodes is equal to the number of failures tolerated.
These codes are calledMaximum Distance Separa-
ble (MDS)codes and are clearly desirable.

2. Encoding performance. This is the time com-
plexity of creating them coding nodes from then
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data nodes. A related metric is theupdate perfor-
mance of a code, which is the number of coding
nodes that must be updated when a data node is
updated.

3. Decoding performance. This is the time complex-
ity of recreating data from the surviving data and
coding nodes.

In this paper, we focus solely on the encoding (and
update) performance of MDS codes. Decoding perfor-
mance is a far more complex problem, and will be ad-
dressed in future work.

The Current State of the Art

We focus first on MDS codes. Whenn = 1, replica-
tion is a trivially time optimal MDS code. Whenn > 1,
any MDS code must perform at leastn − 1 arithmetic
operations per coding block, and any update to a piece
of data must require at leastm operations, one per
coding node [XB99]. The typical operation is bitwise
exclusive-or (XOR), which is extremely fast on most
machines. A second operation is Galois Field multipli-
cation, which is more expensive than XOR.

When m = 1, RAID Level-5 parity [CLG+94] is
an MDS code that performsn − 1 XORs for encod-
ing. Thus, it is time optimal and is pervasive as the main
coding technique in disk array systems. In 1995, a new
parity-based code called EVENODD coding was pre-
sented as the first MDS code form = 2 that relies solely
on parity operations [BBBM95]. This code was recently
extrapolated tom = 3 in the STAR code [HX05]. Nei-
ther code is time-optimal; however, both are close.

In 1999, the X-Code [XB99] was presented as a time
optimal MDS code form = 2, n + 2 prime. This
code has additional significance as the firstverticalpar-
ity code, requiring all storage nodes to hold both data
and coding information, as opposed tohorizontalparity
codes which partition the storage nodes into exclusively
holding either data or coding information.

Apart from these codes, the only MDS codes
are Reed-Solomon codes, which have existed for
decades [MS77, PW72, WB94]. Reed-Solomon codes
are very powerful as they can be defined for any value
of n and m. However, they have a drawback of re-
quiringn Galois Field multiplications per coding block,
and since coding blocks are typically smaller than a ma-
chine’s word size, they can require2n to 8n multipli-
cations per machine word. Thus, Reed-Solomon codes
are expensive. However, they remain the only MDS
coding alternative in a large number of storage appli-
cations [LS00, RWE+01, CP05].

In 1995, Blomeret alpresented two important perfor-
mance improvements to Reed-Solomon codes, termed

Cauchy Reed-Solomon (CRS)coding [BKK+95]. The
first improvement converts all encoding operations to
XORs, so that encoding takesO(nlog2(m + n)) XORs
per coding block. The second improvement is the use
of a Cauchy distribution matrix rather than the stan-
dard Vandermonde distribution matrix [PD05], which
improves the performance of matrix inversion for de-
coding. To date, CRS coding is the state of the art for
general MDS erasure coding.

Since MDS codes can be expensive, recent research
has relaxed space optimality in order to improve perfor-
mance. Following a landmark paper in 1997 [LMS+97],
Low-Density Parity-Check (LDPC) codes have been de-
veloped as important alternatives to MDS codes. Tor-
nado codes [LMS+97, BLM99], IRA codes [JKM00],
LT codes [Lub02] and Raptor codes [Sho03] all en-
code with a constant number of XORs per coding block,
which is a factor ofn betterthan the time optimality cri-
terion defined above. This comes at a cost in space, how-
ever. Specifically, givenm coding nodes, LDPC codes
can only tolerate an average ofm/f failures, wheref
is an overhead factor, whose minimum (and optimal)
value is one.

While LDPC codes are asymptotically MDS
(i.e. f → 1 asn → ∞), they have significant space
overhead penalties for the values ofn andm that many
storage applications require. For example, whenn = 50
and m = 50, the best known LDPC code tolerates
an average of 36.025 node failures [CP05]. When
the ratio of networking performance to CPU speed
is high enough, LDPC codes outperform their MDS
alternatives. However, when that ratio is lower, MDS
codes perform better [PT04, CP05].

A second class of non-MDS codes are the recently-
developed HoVer and WEAVER codes [Haf05a,
Haf05b]. HoVer codes are a combination of horizontal
and vertical codes for smallm that have time-optimal
characteristics, but are not MDS. WEAVER codes are
vertical codes that are also time-optimal, and tolerate
larger numbers of failures (up to 12). However, they
are only MDS in limited cases (n = 2, m = 2 and
n = 3, m = 3).

The Contribution of This Paper

This paper improves the encoding performance of
Cauchy Reed-Solomon codes, and by so doing improves
the state of the art in MDS erasure codes. As men-
tioned above, CRS coding employs a Cauchy distri-
bution matrix to perform encoding (and upon failure,
decoding). Any Cauchy matrix will suffice, and the
number of Cauchy matrices for given values ofn and
m is exponential inn and m. The original work on
CRS coding treats all Cauchy matrices as equivalent
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Addition Multiplication

Figure 1: Addition and multiplication tables
for GF (23).

and specifies an arbitrary construction. The authors
quantify the matrix’s impact on performance as a fac-
tor of O(log2(m + n)) [BKK +95]. While this is true,
big-O notation treats constant factors as equal, and in
these applications, constant factors can have a signifi-
cant performance impact. In this paper, we show that
two Cauchy matrices for the same values ofn andm
can differ in performance by over 8Moreover, we give
an algorithm for constructing Cauchy matrices that have
excellent performance.

Additionally, we compare the performance of our
Reed-Solomon coding to Cauchy Reed-Solomon coding
as originally described [BKK+95], classical “Vander-
monde” Reed-Solomon coding [Pla97], and the parity-
based MDS codes [BBBM95, XB99, HX05, Haf05b].
As such, this paper provides a useful reference for the
performance of various MDS codes.

2 Cauchy Reed-Solomon Coding

To understand the performance improvements in this
paper, we must describe CRS coding in detail.
See [BKK+95] for further details. To help with example
calculations, in Figure 1 we give addition and multipli-
cation tables for the Galois FieldGF (23). Note, addi-
tion is simply XOR. Multiplication is more complex, but
for small fields such asGF (23), a multiplication table
suffices.

All Reed-Solomon coding employs the same
methodology [Pla97]. There aren data words, which are
represented in a column vectorD =< D1, . . . , Dn >.
D is multiplied by an(n + m) × n distribution matrix,
whose firstn rows are the identity matrix. The prod-
uct is ann + m-element column vectorD|C, where
C =< C1, . . . , Cm > represents the coding words.
Thus, each row of the distribution matrix represents a
storage device, which holds either data or coding words.

Decoding proceeds by deleting the rows of the distri-
bution matrix that correspond to node failures, inverting

m

n

Distribution
Matrix

Data
Data &
Coding

Encoding

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

1 5 2 7 4
5 1 3 4 7

D1

D2

D3

D4

D5

D1

D2

D3

D4

D5

C1

C2

* =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 5 2 7 4
5 1 3 4 7

-1

Inverted
Distribution

Matrix

Decoding
after D2 and D5 fail

D1

D3

D4

C1

C2

D1

D2

D3

D4

D5

* =

Survivors
Data

Figure 2: An example of Reed-Solomon coding and de-
coding withn = 5 andm = 2 overGF (23).

the resulting matrix, and multiplying it by the surviving
words in order to recalculate the lost data. The process
is depicted in Figure 2.

The distribution matrix must have the property that
all n × n submatrices are invertible. The classic defi-
nition of Reed-Solomon coding derives the distribution
matrix from an(n + m) × n Vandermonde matrix over
the Galois FieldGF (2w), wheren + m ≤ 2w [PD05].
The word sizes are thus2w bits. Typical values ofw are
4, 8 and 16, since these values allow one to break up
32 and 64 bit machine-sized words evenly into coding
words.

CRS coding modifies this scheme in two ways. First,
instead of using a Vandermonde matrix, CRS coding
employs anm × n Cauchy matrix, again overGF (2w),
wheren + m ≤ 2w. However, with CRS,w can be se-
lected to be as small as possible, rather than be limited
to 4, 8 or 16. Anm × n Cauchy matrix is defined as
follows. LetX = {x1, . . . , xm} andY = {y1, . . . , yn}
be defined such that eachxi andyi is a distinct element
of GF (2w), andX ∩ Y = ∅. Then the Cauchy matrix
defined byX andY has1/(xi + yj) in elementi, j. For
example, in Figure 2, the last two rows of the distribu-
tion matrix make up the Cauchy matrix overGF (23),
whereX = {1, 2} andY = {0, 3, 4, 5, 6}.

The distribution matrix composed of the identity ma-
trix in the first n rows, and a Cauchy matrix in the re-
mainingm rows has the desired property that alln × n
submatrices are invertible. It has an additional property
that these submatrices may be inverted inO(n2) Galois
Field operations [Rab89].

The second modification of CRS is to use projections
that convert the operations overGF (2w) into XORs.
These work as follows. Each elemente of GF (2w) may
be represented by a1 × w column vector of bits,V (e).
This vector is equivalent to the standard binary represen-
tation of the element. Each elemente of GF (2w) may
also be represented by aw × w matrix of bits,M(e),
where thei-th column ofM(e) is equal to the column
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e 0 1 2 3 4 5 6 7

V (e)

M(e)

Figure 3: Vector and matrix representation of the ele-
ments ofGF (23).

vector V (e2i−1). Continuing our example from Fig-
ure 2, in Figure 3, we showV (e) andM(e) for each
elemente overGF (23).

An important property of these projections is that us-
ing standard bit arithmetic (addition is XOR, multipli-
cation is bitwise-and),M(e1) ∗ V (e2) = V (e1e2), and
M(e1) ∗ M(e2) = M(e1e2). For example, inGF (23):

3 ∗ 5 = 4

∗ =

∗ =

The distribution matrix is now converted to aw(n +
m)×wn binary matrix by substitutingM(e) for e in the
distribution matrix overGF (2w). Moreover, instead of
partitioning the data into words of size2w, we partition
each storage device’s entire data space intow packets,
where each packet’s size (B/w bytes) must be a multi-
ple of the machine’s word size. Continuing our example
from Figure 2, suppose each device holds 3 GB. Then,
each deviceDi andCi will be partitioned into three 1
GB packets,Di,1, Di,2, andDi,3 (or Ci,1, Ci,2, and
Ci,3). Then the encoding and decoding processes may
now be implemented overGF (2) (bit arithmetic) rather
thanGF (23). This is depicted in Figure 4, for the ex-
ample scenario of Figure 2 (we omit the identity matrix
to save space).

Bit Matrix

*

D5

D4

D3

D2

D1

=

8B/w bits

1 bit

C2

C1

Figure 4: The Reed-Solomon coding scenario of Fig-
ure 2, converted to use bit arithmetic.

Since the arithmetic of this new matrix is
over GF (2), we can calculate the coding packets
using only XOR operations. Specifically, to calculate
Ci,j , we take the XOR of all packetsDi′,j′ such that the

bit corresponding toDi′,j′ in Ci,j ’s row of the matrix is
one. For example, in Figure 4:

C1,1 = D1,1 ⊕ D2,1 ⊕ D2,2 ⊕ D3,3 ⊕

D4,1 ⊕ D4,2 ⊕ D4,3 ⊕ D5,2.

Let o be the average number of ones per row in the
distribution matrix. Then the number of XORs to pro-
duce a word in each coding packet is equal too − 1.

For example, in the distribution matrix of Figure 4,
there are 47 ones. Since there are six rows,o =
47/6, and thus the average number of XORs per cod-
ing word is o − 1 = 47/6 − 1 = 6.83. Com-
pared to standard Reed-Solomon coding, where each
coding word would require 4 XORs plus 20 multi-
plications overGF (28), (or 40 multiplications over
GF (24)), this is an improvement indeed, and is why,
for example, OceanStore [RWE+01] uses Cauchy Reed-
Solomon coding for their erasure coding.

3 All Cauchy Matrices Are Not
Equal

In [BKK +95], the performance of CRS is reported to
beO(nlog(n + m)) per coding word. This is becauseo
is O(w), andw is O(log(n+m)). Since all Cauchy ma-
trices have the property thato is O(w), the authors give
an arbitrary Cauchy matrix construction:X equals the
first m elements ofGF (2w) andY equals the nextn
elements. For our example scenario wheren = 5
andm = 2, this yields the matrix in Figure 5, which has
54 ones, as opposed to the 47 ones whenX = {1, 2}
andY = {0, 3, 4, 5, 6}.

5 6 7 2 3
6 5 2 7 4

Figure 5: The Cauchy matrix defined in [BKK+95]
for n = 5 and m = 2: X = {0, 1} and Y =
{2, 3, 4, 5, 6}.

The impact on performance is significant. In this ex-
ample, the matrix in Figure 5 requires54/6 − 1 = 8
XORs per word, or a 17% decrease in performance over
the matrix in Figure 2. This observation fuels the explo-
ration in the remainder of the paper.

4 Enumerating Optimal Cauchy
Matrices

The simplest way to discover optimal Cauchy Matrices
is to enumerate them exhaustively. Givenn, m, andw,
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Figure 6: Minimum and maximum Cauchy matrices forw ≤ 4 (i.e.,n + m ≤ 16).

the number of ways to partition the2w elements into the
setsX andY is:

(

2w

n + m

)(

n + m

n

)

,

which is clearly exponential inn and m. However,
for w ≤ 4, and in 107 of the 225 possible combina-
tions of n andm whenw = 5, we have enumerated
all Cauchy matrices, and determined the best and worst
distribution matrices.1 We plot the results forw ≤ 4 in
Figure 6. Instead of plotting number of ones, or num-
ber of XORs, we plot the factor from optimal coding,
where optimal is defined asn − 1 XORs per coding
word [XB99, Haf05a]. Thus, for example, our explo-
ration shows that the Cauchy matrix of Figure 2 indeed
has the minimal number of ones. Since that matrix re-
quires 6.83 XORs per coding word, and optimal coding
would require 4, its factor is6.83/4 = 1.71, which is
plotted in the rightmost graph of Figure 6 atn = 5,
m = 2.

There are three features of Figure 6 worth mention-
ing. First, there is a significant difference in the perfor-
mance of the minimum and maximum Cauchy matrices
for these values. This difference is most pronounced
whenn is small, because that is when there is a greater
variety of possible values in the Cauchy matrix. Second,
the performance of CRS coding gets worse asn grows.
This is to be expected, again because as the Cauchy ma-
trix grows, it must contain more values fromGF (2w).
The elements ofGF (2w) vary in their number of ones,

1While this is roughly half of the combinations ofn and m

for w = 5, it is only 3.7% of the work required to calculate all of
the combinations ofn andm. We are continuing to enumerate opti-
mal matrices for the remainder of these cases.

from exactlyw (element 1) to close tow2. Therefore,
small matrices can be populated with elements that have
haveO(w) ones. The larger matrices must include ele-
ments withO(w2) ones, and thus they perform worse.

The third feature is perhaps unexpected. This is
that for the same values ofn and m, the best matri-
ces forw = 4 perform better than those forw = 3
andw = 2. For example, considern = 2, m = 2.
Whenw = 2, the best matrix has 10 ones, which means
10/4 − 1 = 1.5 XORs per coding word. Whenw = 3,
the best matrix has 14 ones, which means 1.33 XORs
per coding word, and whenw = 4, the best matrix has
18 ones, which means 1.25 XORs per coding word. We
will explore this phenomenon further in Section 7.

5 Generating Good Cauchy Matri-
ces for Larger w

For largerw, it is impractical to use exhaustive search
to find optimal Cauchy matrices. Therefore, we have
developed the following algorithm to construct good
Cauchy matrices. We call the matrices that it pro-
ducesGC matrices (for “Good Cauchy”), and param-
eterizeGC with n, m, andw. TheGC(n, m, w) ma-
trices wheren = m are optimal in all cases that we
have corroborated by enumeration. Whenn 6= m,
someGC(n, m, w) matrices are slightly worse than op-
timal. We measure this effect below.

To construct aGC(m, n, w) matrix, we first con-
struct a2w×2w matrixONES(w). ONES(w)i,j con-
tains the number of ones in the bit matrixM(1/(i+ j)).
Obviously,ONES(w)i,i is always undefined. The ma-
trix ONES(3) is shown in Figure 7(a).
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Figure 7: (a): ONES(3). (b): The optimal Cauchy
matrix forn = 5, m = 2, w = 3.

We may define a Cauchy matrix by select-
ing m columns,X1, . . . Xm, and n rows, Y1, . . . Yn,
of ONES(w), such that noXj = Yi. We define the
weight,W (w, X, Y ) of a Cauchy matrix to be:

W (w, X, Y ) =

n
∑

i=1

m
∑

j=1

ONES(w)Yi,Xj
.

The weight is equal to the number of ones in the Cauchy
distribution matrix, and thus may be used to measure
the encoding performance of the matrix. For exam-
ple, in Figure 7(b), we show the Cauchy matrix of Fig-
ure 2, whereX = {1, 2} is represented by the shaded
columns, andY = {0, 3, 4, 5, 6} is represented by the
shaded rows. The weight of this Cauchy matrix is equal
to the sum of the black squares, 47, which indeed is the
number of ones in the matrix.

Our goal, therefore is to defineX andY such that
W (w, X, Y ) is minimal or close to minimal. First, note
thatONES(w) has an extremely high degree of sym-
metry. There are only2w values inONES(w), which
correspond to the number of ones inM(1/e) for each
elemente ∈ GF (2w). Each of these values occurs ex-
actly once in each row ofONES(w) and in each col-
umn ofONES(w). Moreover, whenn = m is a power
of two, it is possible to chooseX andY such that

W (w, n, m) = n

n
∑

i=1

ONES(w)Yi,X1
.

In other words, for each columnXj of ONES(w), the
values whereXj intersectsY are the same as the val-
ues where the first columnX1 intersectionsY . They are
simply permuted. We call such a Cauchy matrix abal-
ancedCauchy matrix. We show two such matrices for
w = 3 in Figure 8.

We now defineGC(n, n, w) wheren is a power of
two. Obviously,2n must be less than or equal to2w.
For w ≥ 2, GC(2, 2, w) is the minimum-weight bal-
anced Cauchy matrix withX = {1, 2}. For example,
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Figure 8: Balanced Cauchy matrices forw = 3. (a):
n = m = 2, (b): n = m = 4.

GC(2, 2, 3) is pictured in Figure 8(a), and has a weight
of 14.

For n > 2, we constructGC(n, n, w) to be the
minimum-weight balanced Cauchy matrix which con-
tains GC(n/2, n/2, w). For example,GC(4, 4, w) is
pictured in Figure 8(b). ThatGC(n, n, w) always exists
is a simple proof, based on the symmetry ofONES(w),
which we omit for brevity.

We now defineGC(n, n, w) wheren is not a power
of two to be the minimum weight submatrix ofGC(n+
1, n + 1, w). Thus, we constructGC(n, n, w) by con-
structingGC(n+1, n+1, w), and deleting the row and
column that results in a minimal weight matrix. Sincen
is not a power of two, we know that there is a value
of n′ > n such thatn′ is a power of two and2n′ ≤ 2w.
Thus,GC(n′, n′, w) exists, and it is possible to con-
structGC(n, n, w) by constructingGC(n′, n′, w), and
iteratively deleting rows and columns until there aren
rows and columns left. For example,GC(3, 3, 3) is pic-
tured in Figure 9(a), and is constructed by deleting row
6 and column 7 fromGC(4, 4, 3) (Figure 8(b)).
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Figure 9: (a):GC(3, 3, 3), (b): GC(3, 4, 3).

Finally, we defineGC(n, m, w), where n 6= m
to be the minimum weight supermatrix
of GC(min(n, m), min(n, m), w). Supposen > m.
One constructs GC(n, m, w) by first construct-
ing GC(m, m, w), then sorting the weights of the
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rows that can potentially be added toGC(m, m, w)
to createGC(n, m, w), and then adding then − m
smallest of these rows. The construction whenm > n is
analogous, except columns are added rather than rows.
For example,GC(3, 4, 3) is pictured in Figure 9(b), and
is constructed by adding column 7 (rather than column
6) toGC(3, 3, 3).

The running time complexity of construct-
ing GC(n, m, w) is a very detailed calculation, which
is outside the scope of this paper. HoweverO(22w+1) is
a succinct upper bound. While that is exponential inn
andm (sincen + m ≤ 2w), it grows much more slowly
that the number of possible Cauchy matrices, detailed
in Section 4, and allows us to construct good matrices
for larger values ofn andm.

6 Performance of GC Matrices

Our first evaluation ofGC matrices is to compare them
to the best Cauchy matrices generated from our exhaus-
tive search. AllGC matrices forw ≤ 3 are optimal
Cauchy matrices. Forw = 4 and w = 5, the GC
matrices are all optimal whenn = m. Overall, in the
166 cases where we were able to determine the optimal
Cauchy matrix, 53 of them matched theGC matrix. In
the other 113 cases, the maximum performance differ-
ence was forGC(10, 2, 5), which differed by 7.9% from
the optimal matrix in the number of XORs per coding
word. On average, the performance difference between
theGC matrix and the optimal matrix over all cases was
1.78%.

In terms of their performance asn andm grow, we
present two studies – one for smallm, and one wheren
andm both grow. In both studies, we compare the fol-
lowing MDS coding techniques:

• WEAVER: There are two MDS WEAVER
codes [Haf05b] — one form = 2, n = 2, and
one form = 3, n = 3. Both are optimal in perfor-
mance.

• X-Code: The optimal X-Code [XB99] is defined
for m = 2 andn + 2 prime .

• EVENODD: This is defined form = 2 and
all n [BBBM95]. Its performance is slightly worse
than optimal.

• STAR: This is an extrapolation of EVENODD cod-
ing for m = 3 [HX05].

• CRS Coding (GC): This uses the matrices defined
above for all values ofw between 2 and 10, and
selects the one that performs the best.

• CRS Coding (Original): This uses the origi-
nal matrix construction as defined in [BKK+95],
whereX consists of the firstm elements in the
field, andY consists of the nextn elements.

• CRS Coding (BC): This usesBC, or “Bad
Cauchy” matrices, by employing theGC algo-
rithm, but starting with columns 1 and 3, and find-
ing maximum weight matrices rather than mini-
mum weight matrices.

• Standard RS Coding: This uses distribution ma-
trices based on the Vandermonde matrix, and arith-
metic overGF (2w) as outlined in [PD05, Pla97,
Riz97].

The metric for comparison is the factor of optimal
coding, as in Figure 6. For the XOR-based codes (all
but standard Reed-Solomon coding), this is the number
of XORs per coding word, divided byn − 1. As noted
above, the X-Code and the two WEAVER codes attain
this bound.

Standard Reed-Solomon coding uses Galois Field
multiplication in addition to XOR. To enable a com-
parison of it to the XOR-based codes, we measured the
bandwidth of XOR operations (B⊕), and of multiplica-
tion in GF (28) (B∗), which covers values ofn + m ≤
256. For maximum performance, we implemented mul-
tiplication using a256 × 256 multiplication table. This
is faster than either using log and anti-log tables (as
in [Pla97]), or than simulating polynomial arithmetic
overGF (2) using XOR and bit-shifting [PW72]. This
was done on a Dell Precision Workstation with a 3.40
GHz Intel Pentium 4 processor. The measurements are
below:

B⊕ B∗

2992 MB/s 787.9 MB/s

Note, we measure both in terms of their bandwidth
(megabytes per second), which accounts for the fact that
XORs may be done over 32-bit words, while multiplica-
tion overGF (28) operates on 8-bit quantities.

Reed-Solomon coding requiresn multiplications
andn − 1 XORs per coding word. Thus, we calculate
the factor of Reed-Solomon coding as:

(

n−1

B⊕
+ n

B∗

)

(

n−1

B⊕

) .

The results for smallm are in Figure 10. Han-
dling small numbers of failures is the most common
case for disk controllers and medium-scale storage sys-
tems. The most glaring feature of these graphs is that
the special-purpose codes (EVENODD, STAR, X-Code,
WEAVER) drastically outperform the Reed-Solomon
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Figure 10: Performance comparison of MDS codes for2 ≤ m ≤ 5.

codes. Thus, in applications which need reslience to
two and three failures, these should be used in all cases.
Note, this is not a new result; it simply reaffirms the
original research on special-purpose codes, and fuels the
search for good MDS codes for higher values ofm.

Focusing solely on the Reed-Solomon codes, we
draw a few conclusions from Figure 10. First, Cauchy
Reed-Solomon coding in all cases outperforms standard
Reed-Solomon coding. Although it appears that the
two techniques will converge asn grows larger, it must
be noted that whenn + m becomes greater than 256,
standard Reed-Solomon coding must use multiplication
overGF (216), which is much slower than overGF (28)
(we measuredB∗ = 148.5 MB/sec).

Second, not only do theGC matrices outperform
the other constructions, but their performance decreases
gradually asn increases, rather than exhibiting jumps at
the points wheren + m crosses a power of two. We
illuminate this as follows. If one holdsn andm con-
stant and increasesw, the range of weights of Cauchy
matrices (and therefore factors over optimal) increases
drastically; however, the minimum factors stay roughly
the same. For example, in Table 1, we show the weights
of theGC andBC matrices form = 3, n = 29, and
w ranging from 5 to 10. Note then whenw = 5, the
difference between theGC andBC matrices is slight,
whereas whenw = 10, the difference is more than a fac-
tor of two. This means that when a value ofw becomes
unusable (for example, whenm = 3 andn = 30, one
cannot usew = 5), there is far less of a performance
penalty in using theGC matrix for the next value ofw
than using theBC matrix. The “Original” matrices split
the difference between the two.

Our second case study is for larger values ofn andm,
which is applicable to wide-area storage systems and
content distribution systems. In Figure 11, we show

GC(3, 29, w) BC(3, 29, w)
Weight Factor Weight Factor

5 1118 2.63 1154 2.71
6 1370 2.68 1854 3.64
7 1666 2.80 2680 4.52
8 2162 3.18 3470 5.13
9 2303 3.01 4579 6.02
10 2750 3.24 5749 6.81

Table 1: Weights and factors ofGC andBC matrices
for m = 3, n = 29, andw ranging from 5 to 10.

the performance of the Reed-Solomon codes for three
ratesR = n

n+m
: 1

2
(m = n), 2

3
(2m = n), and 4

5

(4m = n). These are rates that are popular in coding
studies and implementations [LMS+97, WK03, PT04].
For example, OceanStore has employed(n, m) pairs
of (64, 16), (32, 32) and (16, 16) in various installa-
tions. For these values ofn andm, Reed-Solomon cod-
ing is the only MDS coding technique.

The only real difference between Figures 10 and 11
is that theGC matrices forR = 1

2
exhibit minor perfor-

mance jumps whenn + m crosses a power of two.

With respect solely to Cauchy Reed-Solomon cod-
ing, theGC matrices are a significant improvement over
the others in nearly all cases. This effect is summarized
in Table 2, which shows the maximum, minimum and
average performance improvement ofGC matrices ver-
sus the original constructions. The greatest improve-
ments come for small values ofn, which are the most
frequently implemented cases. The smallest improve-
ments typically come whenn+m equals a power of two.
In terms of averages, theGC matrices show roughly a
10% improvement over the original constructions in all
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Figure 11: Performance of Reed-Solomon coding for
higher values ofn andm

cases.

Test Maximum Minimum Average
m = 2 81.8% (n = 2) 6.1% (n = 100) 17.3%
m = 3 42.9% (n = 6) 1.2% (n = 61) 11.3%
m = 4 56.8% (n = 5) 1.8% (n = 60) 10.8%
m = 5 51.4% (n = 5) 1.2% (n = 59) 9.4%
R = 1

2
81.8% (n = 2) 3.7% (n = 32) 12.9%

R = 2

3
42.9% (n = 6) 1.7% (n = 42) 11.3%

R = 4

5
34.0% (n = 8) 1.6% (n = 64) 10.1%

Table 2: The improvement in performance usingGC
matrices, as opposed to the original Cauchy construc-
tion.

7 Larger w Can Perform Better
Than Smaller w

Recall Figure 6 from Section 4. This figure illustrates
a point that at first seems counter-intuitive: the factor
for m = 2, n = 2 improves whenw grows from two
to three to four. Probing further, we find that in 52 of
the cases that we studied, the minimum factor occurs at
a value ofw that is not the smallest possible. Most are
whenm = 2. We illustrate four such cases in Figure 12.
In each of the four cases, the factor does not decrease
or increase consistently, but instead jumps around asw
increases.

We make two remarks about this phenomenon. First,
it should not be counter-intuitive. For example, con-
siderm = 2, n = 2, and the Cauchy matrix whereX =
{1, 2} andY = {0, 3}. This Cauchy matrix has two
distinct elements: 1 and 1/2. The element 1 has ex-
actly w ones. The element 1/2 hasw + z − 2 ones,
wherez is the number of non-zero coefficients in the
primitive polynomial forGF (2w) [PW72]. For exam-
ple, for 2 ≤ w ≤ 7 and 9 ≤ w ≤ 11, z is three.
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Figure 12: Four cases where the best performance oc-
curs at a non-minimum value ofw.

For w = 8 and12 ≤ w ≤ 14, z is five. Thus, the
weight of the Cauchy matrix is4w + 2z − 4, and its
factor over optimal is4w+2z−4

2w
− 1 = 1 + (z − 2)/w,

which clearly approaches one asw grows. Additionally,
this explains why the factor goes up whenw = 8 in
Figure 12 (sincez = 5 for w = 8, andz = 3 for the
otherw’s).

w Average Weight
6 11.700000 = 1.95 * 6
7 12.700000 = 1.81 * 7
8 17.550000 = 2.19 * 8
9 14.900000 = 1.66 * 9

Table 3: The average weight of the 20 minimum-weight
elements forGF (26) throughGF (29).

Put another way, while an average element
of GF (2w) does indeed haveO(w2) ones, the elements
with the fewest ones haveO(w) ones, which means
that if Cauchy matrices can be made from them, they
should perform well. It is interesting to note the average
weight of the 20 minimum-weight elements ofGF (2w)
for 6 ≤ w ≤ 9. These are tabulated in Table 3. Be-
cause of the extra elements in the primitive polynomial,
the average weight of the 20 minimum-weight elements
for w = 8 is proportionally higher than the others, and
this effect is reflected in the poor factors forw = 8 in
Figure 12.

8 Available Resources

In [Pla05], we enumerate the optimal andGC matri-
ces generated for this paper. We do this as a service
to the community so that researchers and systems pro-
grammers who want to use the best variants of Cauchy
Reed-Solomon codes may do so.
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9 Conclusions and Future Work

In this paper, we have shown that the construction of
the distribution matrix in Cauchy Reed-Solomon coding
impacts the encoding performance. In particular, our
desire is to construct Cauchy matrices with a minimal
number of ones. We have enumerated optimal matrices
for small cases, and given an algorithm for construct-
ing good matrices in larger cases. The performance dif-
ference between good and bad matrices is significant,
averaging roughly 10% across all cases, with a maxi-
mum of 83% in the best case. The work is significant,
because form > 3, these are the best MDS codes cur-
rently known.

Additionally, we have put the performance of Cauchy
Reed-Solomon coding into perspective, comparing its
performance to standard Reed-Solomon coding, and to
special-purpose MDS algorithms for small numbers of
failures. The main conclusion to draw here is that
the special-purpose algorithms vastly outperform Reed-
Solomon coding, and that more research should be per-
formed on broadening these algorithms for larger num-
bers of failures. The recent work on HoVer [Haf05a]
and WEAVER [Haf05b] codes are promising in this di-
rection.

In this work, we have not studied decoding perfor-
mance, nor have we included non-MDS codes for com-
parison. Both are topics for the future.

Finally, we note the rather counter-intuitive result
that Cauchy Reed-Solomon coding can performbetter
for larger values ofw while holding the other parame-
ters constant. This is because larger Galois Fields may
have more elements with proportionally fewer ones than
smaller Galois Fields. It is a subject of future work to
explore this phenomenon and construct Cauchy matrices
for large fields that perform well.w = 28 andw = 29
are interesting candidates here, as they both have primi-
tive polynomials with only three non-zero coefficients.

References
[ASP+02] S. Atchley, S. Soltesz, J. S. Plank, M. Beck, and T. Moore.Fault-

tolerance in the network storage stack. InIEEE Workshop on
Fault-Tolerant Parallel and Distributed Systems, Ft. Lauderdale,
FL, April 2002.

[BBBM95] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:An
efficient scheme for tolerating double disk failures in RAIDar-
chitectures. IEEE Transactions on Computing, 44(2):192– 202,
February 1995.

[BKK +95] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and
D. Zuckerman. An XOR-based erasure-resilient coding scheme.
Technical Report TR-95-048, International Computer Science In-
stitute, August 1995.

[BLM99] J. W. Byers, M. Luby, and M. Mitzenmacher. Accessingmultiple
mirror sites in parallel: Using tornado codes to speed up down-
loads. InIEEE INFOCOM, pages 275–283, New York, NY, March
1999.

[BLMR98] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. InACM
SIGCOMM ’98, pages 56–67, Vancouver, August 1998.

[CLG+94] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patter-
son. RAID: High-performance, reliable secondary storage.ACM
Computing Surveys, 26(2):145–185, June 1994.

[CP05] R. L. Collins and J. S. Plank. Assessing the performance of era-
sure codes in the wide-area. InDSN-05: International Conference
on Dependable Systems and Networks, Yokohama, Japan, 2005.
IEEE.

[DLLF05] L. Dairaine, J. Lacan, L. Lancérica, and J. Fimes.Content-access
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