
An Introduction to Galois Fields and Reed-Solomon Coding

James Westall
James Martin

School of Computing
Clemson University

Clemson, SC 29634-1906

October 4, 2010

1 Fields

A field is a set of elements on which the operations of addition and multiplication
are defined. The operations are commutative (ab = ba and a+b = b+a), associative

(a(bc) = (ab)c, and a + (b + c) = (a + b) + c) and closed. Closure impliles that the
sum and product of any two elements in the field are also elements of the field. A

distributive law relates multiplication and addition: a(b + c) = ab + ac.

A field also has additive and multiplicative identities (0 and 1) such that a+ 0 = a
and 1a = a for any element in the field. Elements of a field must have additive and

multiplicative inverses. The additive inverse of a is an element b such that a+b = 0
and the multiplicative inverse of a is an element c such that ac = 1.

The existence of these inverses implicitly defines the operations of subtraction and

division. The value of a − c is a + (−c) where −c is the additive inverse of c.
Similarly, the value of a/c is a × c−1 where c−1 is the multiplicative inverse of c.

Division by 0, the additive identity, is not defined. This implies that the additive

and multiplicative identities are not the same (0 6= 1), and also that ab = 0 if and
only if either a = 0 or b = 0.

1



1.1 Finite fields

Well known fields having an infinite number of elements include the real numbers,R, the complex numbers C, and the rational numbers Q. However, the integers

under the usual arithmetic, Z, do not constitute a field because only +1 and -1
have multiplicative inverses.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table 1: Addition table for Z3

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 2: Multiplication table for Z3

Although the real, complex, and rational fields all have an infinite number of ele-

ments finite fields also exist. The symbol Zp refers the integers {0, 1, .., p−1} using
modulo p arithmetic. Zp is a field if and only if p is a prime number.

Regardless of whether or not p is prime each element x has an additive inverse with

the value p− x. This follows from the fact that (x + p− x = p = 0 mod p). If p is
prime then each element x also has a multiplicative inverse y whose value is chosen

so that xy = 1 mod p. There is no simple formula for computing y. For small p,
a simple O(p) algorithm is to multiply a by 2, 3, ...p − 1 halting when the result

is modp is 1. For large values of p a variant of Euclid’s greatest common divisor
algorithm is more efficient.

If p is not a prime number, then it is possible to factor p as p = ab where 1 < a, b <
p. Furthermore the product ab = 0 mod p. In this case a and b are called divisors

of zero. Fields satisfy a cancellation law: ac = ad implies c = d, and the following
argument shows that a fields cannot have divisors of zero. Suppose ab = 0 for

a 6= 0. Since a0 = 0 we can rewrite ab = 0 as ab = a0 and thus by the cancellation
law b = 0. This shows that in any field if ab = 0, then either a = 0 or b = 0.

Therefore, Zp for p not prime is not a field.

Tables 1, 2, 3, and 4 illustrate addition and multiplication in Z3 and Z7 .

For any such finite field it will always be the case the each row of the addition table

2



+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Table 3: Addition table for Z7

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 4: Multiplication table for Z7

is a permutation of the values {0, 1, ..., p − 1} and each row of the multiplication
table except the first row will also be a permutation of the elements of the field.

As noted previously, a value of 1 in the multiplication table identifies a pair of
multiplicative inverses.

1.2 Galois fields

If p is a prime number, then it is also possible to define a field with pm elements
for any m. These fields are named for the great French algebraist Evariste Galois

who was killed in a duel at age 20. They have many applications in coding theory.

The fields, denoted GF (pm), are comprised of the polynomials of degree m−1 over
the field Zp. These polynomials are expressed as am−1x

m−1 + ...+a1x
1 +a0x

0 where

the coefficients ai take on values in the set {0, 1, ..., p− 1}.

When employed in coding applications p is commonly 2 and thus the coefficients
{a0, ..., am−1} are taken from the binary digits {0, 1}. In coding applications, for

m ≤ 32, it is common to represent an entire polynomial in GF (2m) as a single
integer value in which individual bits of the integer represent the coefficients of the
polynomial. The least significant bit of the integer represents the a0 coefficient.

3



1.2.1 Polynomial arithmetic in GF (2m)

Addition and multiplication of polynomial coeffcients, but not the polynomials

themselves in the field GF (2m) are defined by the rules of Z2. These are shown

in tables 5 and 6. It can be observed that addition is defined by the exclusive or

operation and multiplication by the and operation.

+ 0 1
0 0 1
1 1 0

Table 5: Addition table for Z2

× 0 1
0 0 0
1 0 1

Table 6: Multiplication table for Z2

These operations are used in manipulating the coefficients during multiplication and
addition of polynomials, but the basic algorithms used in adding and multiplying
polynomials over the integers remain applicable.

1.2.2 Polynomial addition in GF (2m)

To add two or more polynomials, for each power of x present in the summands, just

add the corresponding coefficients modulo 2. If a particular power appears an odd
number of times in the summands it will have a coefficient of 1 in the sum. If it

appears an even number of times or does not appear at all, it will have a coefficient
of 0 in the sum. For example,

(x2 + 1) + (x + 1) + (x2 + x + 1) = 1.

Similarly,

(x2 + x + 1)(x + 1) = x3 + x2 + x + x2 + x + 1 = x3 + 1.

Note that the polynomials of degree m − 1 are closed under polynomial addition.
The sum is always a polynomial of degree no more than degree m−1. Furthermore,
because of the xor method of addition, each polynomial is its own additive inverse.

4



1.2.3 The generating polynomial of GF (2m)

The polynomials of degree m−1 are not closed under multiplication. For example,
xm−1 times xm−1 is x2m−2. Thus for all m > 1, the degree of the product may

exceed than m − 1.

Our objective is to build a field of 2m elements in which the operations of addition
and multiplication are based upon polynomial addition and multiplication. Thus,

we need a mechanism for ensuring that multiplication is closed. To do this we
resort again to modular arithmetic.

A generating polynomial for GF (pm) is a degree m polynomial that is irreducible
over Zp. This simply means that it cannot be factored. For example x3 + 1 is not

irreducible over Z2 because it can be factored as (x2 +x+1)(x+1). Note that this
factorization works only over Z2 and not Z.

1.2.4 Polynomial addition and multiplication in GF (23)

If an irreducible polynomial g(x) can be found, then polynomial multiplication

can be defined as standard polynomial multiplication modulo g(x). That is, to
compute the product a(x)b(x) first compute p(x) = a(x)b(x) and then transform

p(x) back into the set of polynomials of degree m−1 by taking the remainder when
p(x) is divided by g(x). If p(x) already has degree no larger than m − 1, then the
remainder is simply p(x), but if this is not the case, the remainder is guaranteed

to have degree no higher than m − 1.

Note that the requirement that g(x) be irreducible is implicit in this definition of
multiplication. Suppose g(x) is not irreducible. Then there exist two polynmials

a(x) and b(x) such that g(x) = a(x)b(x). However, g(x) = 0modg(x). Hence a(x)
and b(x) are divisors of zero, and it has previously been shown that fields may not

contain zero divisors.

It is the case that both x3+x+1 and x3+x2 +1 are irreducible over Z2. Therefore,
either one can be used to generate a field of 8 elements representing polynomials

of degree 2. The mapping of coefficients to numbers for x3 + x + 1 is given in the
table 7.

We will consider g(x) = x3 + x + 1 in the following examples. Our objective is

to generate addition and multiplication tables for GF (23) that are analogous to

5



Dec Bin Poly
0 000 0
1 001 1
2 010 x

3 011 x + 1
4 100 x2

5 101 x2 + 1
6 110 x2 + x

7 111 x2 + x + 1

Table 7: Polynomial representation

those we developed for the field Z7. Addition can be performed by inspection. For
example 3 + 5 represents (x + 1) + (x2 + 1) = x2 + x which is 6. So 3 + 5 = 6.

An equivalent approach is to remember that polynomial addition over Z2 is defined
by the xor operation. So 3 + 5 = 011 xor 101 = 110 = 6. Code to implement

addition over GF (2m) for m less than or equal to the word size of the computer is
trival.

int gf_add(

int v1,

int v2)

{

return(v1 ^ v2);

}

The gf add() function was used to produce the following addition table.

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Table 8: Addition table for GF (23)

Multiplication cannot be represented so simply. Consider the problem of multiply-
ing 5 × 6. This is (x2 + 1)(x2 + x) = x4 + x3 + x2 + x. Since this result has terms

of higher order than 2, it is necessary to reduce the result modulo g(x). This can
be done via long division as shown. The reduction of x4 + x3 + x2 + x is x + 1.

6



1 1

_________________

1 0 1 1 | 1 1 1 1 0

1 0 1 1

-------

1 0 0 0

1 0 1 1

-------

0 1 1 <-- (x + 1)

We can consider problem of modular reduction of degree from an alternate but
equivalent perspective. Suppose we apply the modular mapping to x3 itself. That

is, we wish to know what is the remainder when x3 is divided by x3 + x + 1.

1

_________________

1 0 1 1 | 1 0 0 0

1 0 1 1

-------

0 1 1 (x + 1)

Here we see that the remainder is (x + 1). In general the remainder when the

high order term of the generator is divided by the generator itself will always be
comprised of the generator absent its high order term.

This also follows from the fact that g(x) = q(x) + r(x). The quotient with the

high order term is divided by the generator is always the high order term, and the
remainder is thus necesssarily the remainder of the terms.

Thus, when an x3 term appears in the product in may be replaced by x + 1. Since

x4 = x(x3) = x(x+1) = x2+x, an x4 term in the product can be replaced by x2+x.
This reduction strategy may be used manually in place of long division. Applying
the strategy to the answer we found above we observe that x4 + x3 + x2 + x =

x2 + x + x + 1 + x2 + x = x + 1.

The full process of multiplication followed by reduction can be coded reasonably
succinctly as:

int gf_mult(

7



int m, // GF(2 ^ M)

int poly, // low order terms of g(x)

int v1,

int v2)

{

int prod = 0;

int k;

int mask;

/* Multiply phase */

for (k = 0; k < m; k++)

{

if (v1 & 1)

{

prod ^= (v2 << k);

}

v1 >>= 1;

if (v1 == 0)

break;

}

/* Reduce phase */

mask = 1 << m;

mask <<= m - 2;

for (k = m - 2; k >= 0; k--)

{

if (prod & mask)

{

prod &= ~mask;

prod ^= (poly << k);

}

mask >>= 1;

}

8



return(prod);

}

The multiply phase models manual polynomial multiplication by performing suc-

cessive adds of shifted terms of the multiplicand if the corresponding coefficient in
of the multiplier is not 0. The reduce phase models the long division algorithm,
or, equivalently, the replacement algorithm. The gf mult() function was used to

generate the following multiplication table.

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

Table 9: Multiplication table for GF (23)

1.3 Fast multiplication using logarithms

Any element of GF (2m) may be used as a logarithmic base. We will use base 2 in
the following example in GF (23). As usual log2(k) = j if and only if 2j = k, and

then it is also true that log−1
2 (j) = k. It is also the case that, as usual, log2(0) is

undefined and for a more subtle reason so is log−1
2 (2m− 1). The latter follows from

the fact that in GF (2m) j2m−1 = 1 for any non-zero j and log2(1) has already been
defined to be 0.

The following simple algorithm can be used to construct the table of logarithms

shown below. As expected, the inverse logarithm table is simply a table of powers
of 2.

/* Construct the log and inverse log table */

gf->ilog[0] = 1;

prod = 2;

for (i = 1; i < gf->size - 1; i++)

{

gf->ilog[i] = prod;

gf->log[prod] = i;

9



prod = gf_mult(gf, prod, 2);

}

i 0 1 2 3 4 5 6 7
log2(i) - 0 1 3 2 6 4 5

log−1

2
(i) 1 2 4 3 6 7 5 -

Table 10: Logarithm tables for GF (23)

The following examples show how to use the tables to perform multiplication.
As usual ab = log−1

2 (log2(a) + log2(b)). Thus, to multiply 3 × 4, we first see that
log2(3) = 3 and log2(4) = 2. To add the logarithms, we use normal integer addition

not xor because we are operating on exponents and not elements of the field, and
we find 2 + 3 = 5. Finally, we see log−1

2 (5) = 7. We can verify from table 9 that 7

is the correct answer.

Since we are using integer arithmetic to add the exponents, we can get a value
too large to use as an index into the inverse logarithm table. As previously noted

n2m−1 = 1 for all values, n, in the Galois field. Thus successive exponentiation
repeats itself cyclically with a period of 2m − 1. Therefore, when the sum of

exponents is ≥ 2m − 1, then 2m − 1 is subtracted from the sum. This maps it into
the correct range to be used as a table lookup key.

For example, in computing 5 × 6 we obtain logarithms 6 and 4 whose sum is 10.
Subtracting 7 from 10 yields 3. The inverse log of 3 is 3 which is the correct

product.

2 Reed-Solomon Codes

Reed-Solomon codes can be used to perform a form of forward error correction FEC

in computer networks. The specific type of correction is called erasure correction.
The objective of erasure correction is to recover from loss of entire packets. They

can be used in conjunction with traditional error detecting cyclic codes by simply
treating packets with errors as lost.

The encoding and decoding employs arithmetic in the domain GF (2m). We will

use m = 3 as an example. GF (23) consists of 8 elements. Each element is a
polynomial of degree 2 and is encoded in an 3 bit value. We will use the generator

g(x) = x3 + x + 1.

10



The value, m, is the word size of the encoding. Each packet is subdivided into words

of length m bits and check values must be computed for each word. Therefore, in
the real world word sizes of 8, 16, or 32 instead of 3 would normally be used.

The packet stream that is actually transmitted consists of FEC groups containing

both data packets and check packets used in reconstructing lost data packets. Data
packets are fixed size and check packets have the same length as data packets.

A FEC group consists of n data and k check packets where n+k <= 2m. Successful

receipt of any n packets from the combination data and check packets is sufficient
to permit reconstruction of the n data packets.

The algorithm requires an encoding/decoding matrix of n + k rows and n columns
having the properties that (1) the first n rows constitute an n× n identity matrix,

I, and (2) any n of the n + k rows are linearly independent. Property (2) ensures
that any collection of exactly n rows constitutes an invertible n × n matrix.

The required matrix is derived from Vandermonde matrix which is known to possess

property (2). For arbitrary, n and m this matrix has the following form. The fact
that the largest value in GF (2m) is 2m − 1 necessarily constrains the number of

rows and columns in the matrix (n + k) to be less than or equal to 2m.



















00 01 02 ... 0(n−1)

10 11 12 ... 1(n−1)

20 21 22 ... 2(n−1)

... ... ... ... ...

(2m − 1)0 (2m − 1)1 (2m − 1)2 ... (2m − 1)(n−1)



















For the specific choices of m = 3, n = 3 and k = 5, the Vandermonde matrix has

the following form.

11



V =



































1 0 0

1 1 1

1 2 4

1 3 5

1 4 6

1 5 7

1 6 2

1 7 3



































This matrix is known to possess property(2) but clearly does not possess property
(1). Nevertheless, by a series of linear transformations in which a multiple of one

column is added to another, we can obtain property (1) while preserving property
(2). For example, if we add column 1 to column 0 and column 2, then row 1 is

transformed to have the desired values 0 1 0. To fix up row 2 of the matrix we
multiply column 2 by the multiplicative inverse of 4 and then add column 2 to 1

and 2× column 2 to column 1. This process can be continued until the first n rows
constitute an identity matrix. We will call this transformed matrix D.

D =



































1 0 0

0 1 0

0 0 1

1 1 6

4 3 2

5 2 2

5 3 4

4 2 4



































2.1 The encoding algorithm

For simplicity we will assume that each data packet consists of only one 3 bit word.
If an actual packet consisted of 12,000 bits, the process described below would have
to be repeated 4,000 times, once for each data word in the packet.

12



The bottom k rows of the transformed Vandermonde matrix, D, constitute the

encoding matrix E that is used to create the k check packets.

E =





















1 1 6

4 3 2

5 2 2

5 3 4

4 2 4





















The matrix E has dimension k × n where k is the number of check packets and n
is the number of data packets. When the n × 1 vector of data words is multiplied

by E as shown an k × 1 vector of check values is produced. In this example we
assume that the 3 data words have the values {4, 5, 6}.





















1 1 6

4 3 2

5 2 2

5 3 4

4 2 4





















×









4

5

6









=



















3

5

4

3

2



















Each of the 8 “packets” must also carry an identifier that allows the recipient to

determine exactly which packets of a FEC group have been received. The values
contained in the 8 “packets” that are sent are thus:

{(0, 4), (1, 5), (2, 6), (3, 3), (4, 5), (5, 4), (6, 3), (7, 2)}.

2.2 The error correction algorithm

The correction algorithm is then straightforward. Suppose a collection of n packets

including both data and check packets have been received. We extract the n rows
of the D matrix corresponding the n recieved packets. We call this n × n matrix

D′ and by property (2) it is invertible over G(2m). We invert D′ to obtain D′−1.
Then the product of D′−1 and the received mixture of data words and check words
recovers the data words d0, ...dn−1.

13



Continuing with our numeric example, suppose only packets 3, 4, and 5 containing

the first three check values {3, 5, 4} are received. The receiver doesn’t know what
the data values are so we will call them d0, d1, and d2. Nevertheless the receiver

must know what values of m, n and k are in use. Thus, the receiver can construct a
matrix D′ consisting of rows of the modified Vandermonde matrix that correspond
to the packets that were received.

D′ =









1 1 6

4 3 2

5 2 2









Because the receiver also knows the algorithm by which the check packets were
constructed, the receiver knows that:









1 1 6

4 3 2

5 2 2









×









d0

d1

d2









=









3

5

4









Inverting D′ yields D′−1

D′−1 =









5 6 2

5 7 3

3 3 3









Multiplying the received check values by D′−1 recovers the original values.









5 6 2

5 7 3

3 3 3









×









3

5

4









=









4

5

6









2.3 Analysis of coding overhead

Three parameters determine the cost of the FEC procedure. The value of m defines
the Galois field as GF (2m) and also defines the word size of the encoding to be m.

14



For example, a packet having 210 bits, consists of 256 words over GF (24) but only

64 words of GF (216).

The size of a FEC group is n + k where n is the number of data packets in a group
and k is the number of check packets. The matrix D consists of n + k rows and
n columns. The encoding matrix E that is used to generate the checksums has

dimension k rows and n columns.

2.3.1 Check packet generation

Thus the generation of each word of the checksums requires multiplication of an
k × n matrix times a vector of length n. This requires n multiplies and n− 1 sums

per row or a total of kn multiplies and kn − 1 sums per packet word.

If multiplication is implemented as logarithm table lookups followed by addition
and inverse logarithm lookup, multiplication can be done in constant time for values

of M for which tables of size 2m are practical. In this case each multiplication can
be done as one or two integer additions and two table lookups.

Note that doubling of both k and n which keeps the fraction of FEC packets con-
stant quadruples the cost of generating the checksums. This is a strong motivator

for the use of an FEC group interleaver as opposed to a large value of n for for
additional robustness against error bursts.

2.3.2 Recovery from errors

Error recovery begins with the inversion of the n × n matrix comprised of rows

from the D matrix corresponding to the n packets in the FEC group that were
actually received. In the worse case this inversion is O(n3). In practice the cost of
the inversion is proportional to the number of check rows that must replace identity

rows in the decode matrix. When the inversion has been completed, it is necessary
to multiply the received vector of n words by the n × n inverse matrix for each

word in the packet. As noted above this requires O(n2) multiplies and sums.

15



2.4 Example

Assuming GF (216), n = 6, and k = 2, generation of the 2 check packets requires
64 × 2 × 6 multiplies and a similar number of additions. Decoding requires no

overhead if no packet is lost. Furthermore, since there are only 2 check words in
each each FEC group of 8 words, at most two rows need be transformed by column
operations in the inversion process.

16


